Generic filters

How Important is Equipment Validation in the Pharma Industry?

Disasters often stir humankind into constructive action. It was in the wake of the infamous “Contergan Scandal” that Good Manufacturing Practice (GMP) evolved in the United States in 1963 [1]. And, the issue of sterility in the parenteral market made two Food and Drug Administration (FDA) officials put forth the concept of validation in 1979 [2].

Pharma products have a direct impact on the health of the consumers. Ensuing quality of products is, therefore, a top priority for regulators. Dosage strongly impacts the percentage of the drug that reaches the site of action. Therefore, each batch of manufactured drugs must be of the same quality [3], meaning consistency is of paramount importance.

Equipment Validation documents evidence that a piece of equipment conforms with the required standards across all stages [4]. GMP ensures that quality is an integral part of a product and not merely tested in it [5]. Equipment validation is a component of GMP which guarantees that the equipment maintains the required standards and, as a result, consistently provides products of the necessary quality [5].

Cybernetik Technologies has successfully validated and delivered multiple pieces of equipment for the pharmaceutical industry. Our technicians engage with clients throughout the equipment validation process, while conforming with the US FDA Part 211 and Part 11, EU Annexe 11, and cGMP standards, and also drafting the necessary documents.

When the validated equipment is part of a larger process, the validation documents play another key, although indirect, role – that of rapid error detection. If the process output is not as expected, technicians need to pin point the error. They can safely rule out equipment defect because it is already validated [6].

Equipment Validation for Pharma Industry Equipment

Cybernetik Technologies implements validation for pharmaceutical equipment through the following distinct steps which include the documents mentioned therein:

  1. Requirement Understanding:
    • Client URS (User Requirement Specification): is the starting point of the validation process and describes what performance the client expects out of the equipment [6]. Customers can either provide the client URS directly or our personnel create it after capturing their requirements.
    • Internal URS: converts client URS into a set of instructions and particulars for our technicians.
  2. Design & Development: defines the various components of the equipment, their capacities, materials, location in the overall set up, and other relevant features. Two documents/phases are particularly important:
    • Functional Design Specifications (FDS): describes how the system will perform its expected operation. FDS is the source for functional design requirements.
    • Detailed Design Specifications (DDS): is the source for the detailed design requirements and explains how to build the system.
      FDS and DDS are normally verified during qualification or commissioning.
  3. Design Qualification (DQ): ensures that the end user’s point of view is incorporated in the design process.
  4. Factory Acceptance Testing (FAT): analyses whether the equipment performance conforms with the end user’s specifications. The venue for FAT is the Cybernetik shop floor.
    After a successful FAT, the customer and Cybernetik clear the machine for dispatch after certifying that it has been built to satisfy the User requirements (as per URS) and in accordance with FDA and DQ.
  5. Installation Qualification (IQ): ensures that the client’s facility provides the appropriate setting for the piece of equipment [6]. IQ is based on DQ [7]. The three most common verifications during IQ are whether the equipment has adequate space allotted in the facility, is connected to the necessary utilities, and is installed with the required software [6]. Technicians also check if the equipment installation:
    • Integrates it with other equipment/systems [7].
    • Complies with qualification protocol and plan [8].
    • Considers all the equipments sub parts [8].
    • Makes arrangements for maintenance, calibration, and cleaning in future.
    • Utilizes the relevant national/international standards for calibration, measurement, and control.
    • Notes all equipment details such as model, serial number, spares, installation date, certificates.
  6. Operational Qualification (OQ): is based on IQ. Technicians check if the:
    • Equipment operates as expected, particularly at the extreme operational ends [8] and follows the required operational sequence [7].
    • All equipment components operate correctly.
    • Technicians are correctly trained to operate the equipment.
    • Standard Operating Procedures (SOPs) are finalized and ratified.
    • All results are documented.
  7. Performance Qualification (PQ): examines if the equipment/system performs consistently under load as required by the design specifications. Technicians create all the necessary documents for performance verification.


For building quality into pharma products, there is also a need to build unwavering precision into the equipment validation process. Because we cannot afford to forget that drugs are a lifeline for many!

Cybernetik Technologies has successfully validated pharmaceutical equipment for a diverse set of clients. Engaging with clients right from the design qualification stage, we walk them smoothly through the installation, operational, and performance qualification stages.

Contact us at +91 20 6790 9600 or [email protected] and experience the joy of seamless services.


  1. Food Processing, Wikipedia.
  2. Ready-to-Eat Food Market Report, Mordor Intelligence.
  3. Safety of Ready-to-Eat Foods, ResearchGate.
  4. Ministry of Food Processing Industries India Reports.
  5. Food safety agency FSSAI launches ‘Trans Fat Free’ logo, Hindustan Times.
  6. High Pressure Equipment Designs for Food Processing Applications, Food Engineering Series.
  7. Industrial Pressure Kettle VKP, FoodTechProcess.
  8. Food Storage, Preparation and Safety: In-depth, Croner-i.

A New Normal

Global crises trigger far reaching and fundamental transformations in consumer preferences, industrial practices, and government policies. The COVID-19 pandemic is no different. It will force manufacturers to comprehend those aspects of business, society, and politics that will be radically modified. Furthermore, they will have to proactively build capacity to deal with the new normal [1].

Paradigm Shifts

Following areas will experience paradigm shifts:

  1. Automation: will be increasingly deployed to resurrect the manufacturing sector. Productivity expansion via robotics and automation will be at the focal point of this effort, which will generate fresh employment opportunities for digitally proficient workers, but not for the low-skilled ones [1].
  2. Rapid Factory Digitalization: that places a premium on flexible and precise management of factory operations from a remote location. Such management will necessitate fast incorporation of industrial IoT based on superior data visualization, sensing, artificial intelligence, and tools for remote collaboration [1].
  3. Digital Divide among Manufacturers: two broad sets of manufacturers will emerge in the wake of the socio-economic decline. At the top end will be the digitally-savvy ones who embarked on the digital journey years ago. The late entrants will be at the other end [1].
  4. Greater Attention to Health & Safety: Good Manufacturing Practice (GMP) and Current GMP (cGMP) will assume more significance given their focus on plant and operator hygiene. Employees can expect greater monitoring and tracking of their movements and geographical data viz. residence location, recent travels and particularly international travel [2].
    Industries will also rearrange workspaces, operate in staggered shifts, maintain more distance between employees, and prohibit visitors on the shop floor to prevent coronavirus transmissions [2].
  5. Improved Strategies for Worker Retention & Deployment: particularly for workers who have to be on-site. Such workers will receive more education on how to respond to symptoms and contain the spread of the virus [2].
  6. Flexible Management Practices: that incorporate change management and adaptable work schedules to effectively handle greater automation levels, more number of remote employees, and the learning curves of such employees [2].
  7. “Virtual Shift” Replacing “Physical Shift”: with fewer people on the shop floor (on site), a team of virtually-connected experts will be continuously available online for consultation by the shop floor personnel. Facilitating the virtual shift will be AI-enabled tools, real time handling of data, and numerous collaboration cum communication instruments [1].
    The virtual shift will digitally scale the expertise of the specialist team over the entire institution while boosting the productivity of the shop floor team [1].
  8. Emphasizing Cybersecurity & System Capacity to Resist Attacks: with more employees gaining online access to the main system areas, security of cyber network will be of paramount importance. The system design has to be resilient in order to withstand repetitive attacks [2].
  9. Supply Chain Overhaul: is necessary in order to avoid last minute unavailability of parts, particularly the critical elements. Manufacturers will take more efforts to thoroughly understand in real time their supply networks. Suppliers identified as vulnerable to disrupting the chain will be replaced [2].

Survival of the Adaptable

Adaptability will be the key to survival at a time when the COVID-19 pandemic has unleashed rapid and extensive transformation in most aspects of the manufacturing sector. The challenge also presents a huge opportunity for the digitally savvy manufacturer.

Cybernetik Technologies delivers customized automation solutions for a whole range of manufacturing operations.

Contact us at +91 20 6790 9600 or write to us at [email protected] for automation services that prepare your business for the future.


  1. What Will Manufacturing’s New Normal Be After COVID-19?, IndustryWeek.
  2. COVID-19: What it means for industrial manufacturing, PwC.

Transformation in the Making

Utilizing Big Data to improve its process, a gold mine in Africa saved $20 million a year [1]. The car industry struggles to build a new car model in six years; Local Motors does that in one by tapping the boundless capacity of 3D Printing [1]. Logistics firm Knapp AG slashed error rates by 40%; courtesy: picking technology based on Augmented Reality [1].

Big Data, 3D Printing, Augmented Reality and many more such technologies are steering the world of manufacturing and supply chain management towards a radically new destination – called Industry 4.0. Herein, three broad technological trends are clearly palpable – connectivity, adaptable automation, and intelligence [2].

These trends deliver a Cyber Physical System (CPS) which integrates manufacturing processes in the physical world with digital computers and networks. The digital monitors and controls the physical. Feedback mechanisms from both, the physical and the digital components, influence the other [3].

Also termed variously as the Fourth Industrial Revolution, Smart Manufacturing, or Industrial Internet of Things (IIoT), Industry 4.0 blends real world operations with intelligent digital technology, big data, and machine learning, to build a wholesome and linked network [4].

Smart Machines & Smart Supply Chains

Machines generate voluminous data when operating. Big Data analyzes this information to obtain valuable insights and spot patterns, something that would be near-impossible for humans. Based on such data evaluation, the machines make decentralized [5], autonomous decisions on operation and maintenance without human involvement [6].

Next, machines use interconnectivity to share the data and its analysis with other machines in the same organization [6]. The network also makes them capable of sharing the same with other manufacturers employing similar equipment and/or processes.

Consequently, the productivity and efficiency of all such linked manufacturing operations rises substantially while wastage falls to a bare minimum [6]. All in all, this creates an entire ecosystem of efficiency and productivity – smart machines in smart factories!

However, the human touch is not completely missing in this smart ecosystem. Making decisions in the face of uncertainty and executing operations that require intuition, experience, and creative thinking are areas still reserved for the human mind [7].

Supply Chains of the present day comprise of a complex web of interconnections that link the distribution network with product development and production operations [8]. Shifting over to an interlinked, automated, and digitized supply chain requires sizable investments. However, the returns are immense viz. [9]:

  • 30% or greater cut in operational costs.
  • 60% or more lowering of lost sales opportunities.
  • 70% or higher reduction in inventory requirements.

Here is how these benefits can be realized [9]:

  • Improved Transparency & Precision: Knowing precisely and in real time where the goods are located in the supply chain boosts the accuracy of orders, batch and lot control, and estimated time of arrival (ETA), while optimizing inventory levels and minimizing related costs.
  • Better Collaboration: Through improved transparency and uninterrupted flow of data, all stakeholders get to work closely and develop trust. Greater cooperation allows continuous planning, flexible pricing in view of fluctuating demand-supply situation, and minimal lead times.
  • Superior Demand Forecast: Predictive analysis of data compiled from sensors, weather prognosis, developments on the social media and other such sources has cut down forecast errors by as much as 50%. As a result, companies can maintain optimized stock levels that lower inventory costs while also avoiding shortage and surplus situations.
  • Excellent Warehouse Management: Real time tracking of consignments means warehouse supervisors know when exactly the goods will arrive. This facilitates pickup and delivery without delay, which, in turn, prevent waiting times that escalate labor working hours. Again, upgraded demand forecast promotes optimal utilization of warehouse space.
  • Bringing Stakeholders on the Same Page: Since all stakeholders refer to the same data, they use the same inputs for decision making. Such coherence is priceless when swiftly responding to a situation.
  • Adaptable Supply Chain: Machine learning empowers the supply chain to learn and evolve on its own in the face of fluctuating situations. Dealing with unpredictable risks does require human inputs though.

Summing up, smart factories and smart supply chains under Industry 4.0 are [10]:

  • Linked: Data flows between various machines and departments of the ecosystem. Various points/stations in the related supply chains also exchange information.
  • Optimized: Operational algorithms analyze the data and optimize all operational facets with least human inputs.
  • Proactive: Data analysis predicts when a problem related to maintenance, inventory, or quality might arise. Such forecast enables preventive action.
  • Transparent: Management shares insights obtained from data analysis with the relevant department/point in the supply chain. The latter can initiate appropriate action.
  • Flexible: The factory is fast when executing changes in production, schedule, inventory etc. Through this, it maximizes returns and/or mitigates risks.

Technologies Powering Industry 4.0

A host of technologies are propelling Industry 4.0 towards greater acceptance. These include:

  • Internet of Things (IoT): Refers to a mechanism of interrelated and interconnected machines. These devices exchange data and its analysis over the network without human-computer or human-human communication [11].
  • Artificial Intelligence (AI): The capacity of machines (hardware and software) to learn from data evaluation is one of the pillars of Industry 4.0. It is AI that makes machines capable of self learning [12].
  • 3D Printing/Additive Manufacturing: Is among the backbones of Industry 4.0. Makes products by accumulating thousands of layers of extremely thin molten material one over the other in the horizontal plane. A digital system directs the material depositing gun.
  • Mass Customization is among the chief benefits of 3D Printing. Manufacturers only have to change the digital file to make a new product. Traditional production processes involve costly product development and tooling stages, which compel mass production to make manufacturing viable.
    By eliminating the compulsion of mass production, 3D Printing makes it possible to set up small, decentralized manufacturing facilities that have short supply chains with better control over delivery.
  • Big Data: Collects and analyzes data from countless machines, points in the supply chains, social media developments, weather forecasts and the like. It is the interpretation of such data that empowers a proactive course of action, making Big Data a fundamental element of Industry 4.0.
  • Sensors and Data Collection: Data is the basic unit of Industry 4.0. Top quality sensors gather more accurate data. The evaluation of such data is more precise. Actions based on such analysis will invariably be more effective.
  • Nano Technology: Nano materials make exemplary sensors with incredible data gathering efficiency. And, data integrity is the starting point of Industry 4.0 [13].
  • Augmented Reality (AR): Visualization is a powerful tool. By superimposing virtual images on the real world view of the user, AR:
    • Simplifies complicated assembly involving large number of components [14].
    • Permits early detection of errors in prototypes [15].
    • Facilitates specialist support from remote locations [15].
    • Enables quick locating of warehouse inventory [15].
    • Allows salespersons to better explain products to clients [15].
    • Empowers supervisors to improve worker’s understanding of safety hazards and exit points [15].
  • Virtual Reality (VR): By generating a virtual environment resembling the real one, VR promotes [14]:
    • Superior training of employees.
    • Swift detection of glitches in the factory planning process.
    • Easier plant inspections.
  • Autonomous Robots: Will be among the main executives in Industry 4.0. These will perform manufacturing operations and handle goods [16] under the supervision and control of computers and networks.
  • Autonomous/Unmanned Vehicles: Delivering finished goods to end users is very much a part of smart manufacturing, as is product recycling and post-sale services [17].
    Apart from internet connectivity and AI that respectively provide data and decision making ability, technologies such as Global Positioning system (GPS), Laser Illuminated Detection and Ranging (LIDAR), and Inertial Navigation System (INS) will make vehicles smarter [17].
  • Industrial Mobile Device (Platform): Present day mobiles or smartphones can collect and process tons of data. With internet connectivity, quality cameras, and top class software, mobiles can monitor and control factory operations [18].
  • Cyber Security: A 2016 survey of industry experts by McKinsey identified cyber security as a major roadblock [19] in the adoption of Industry 4.0 technologies. Improved cyber security measures will inspire greater adoption of Industry 4.0.

Slow & Steady: The Road Ahead

All innovations are slow to gather momentum. But once they accumulate critical mass, they cross the threshold of credibility and get moving in top gear. Premised as it is on the fate of numerous technologies, Industry 4.0 is in the process of gaining momentum. But thrive it will, for no one can stop an idea whose time has come!

Cybernetik Technologies has installed numerous turnkey mechanisms embedded with multiple elements of Industry 4.0 in our client’s systems to facilitate Predictive Maintenance and Process Monitoring. Shortly, we are coming out with Augmented Reality Modules to permit more Intuitive Operations and Maintenance.

Contact us at +91 20 6790 9600 or [email protected] and be a part of the next Industrial Revolution – the future of manufacturing is here!


  1. Manufacturing’s next act, McKinsey & Company.
  2. Industry 4.0: 7 Real-World Examples of Digital Manufacturing in Action, AMFG.
  3. Cyber physical systems role in manufacturing technologies, AIP Publishing.
  4. What is Industry 4.0—the Industrial Internet of Things (IIoT)?, Epicor.
  5. Fourth Industrial Revolution, Wikipedia.
  6. What is Industry 4.0? Here's A Super Easy Explanation For Anyone, Forbes.
  7. Industry 4.0: Required Personnel Competencies, International Scientific Journal.
  8. What does Industry 4.0 mean for the supply chain network?, Supply Chain.
  9. Impact of Industry 4.0 on Supply Chains — All You Need to Know, GEP.
  10. Industry 4.0: Required Personnel Competencies, International Scientific Journal.
  11. Internet of things, Wikipedia.
  12. Artificial Intelligence and Machine Learning in Industry 4.0, Venkat Vajradhar.
  13. Where Nanotechnology, the IoT, and Industry 4.0 Meet, Mouser Electronics.
  14. How Augmented Reality and Virtual Reality fit into Industry 4.0, Plutomen.
  15. Augmented Reality for Industry 4.0, Onirix.
  16. What Industry 4.0 Means for Manufacturers, Aethon.
  17. Industry 4.0 Revolution in Autonomous and Connected Vehicle, Journal of Theoretical and Applied Information Technology.
  18. Mobile devices in Industry 4.0, Critical Manufacturing.
  19. Industry 4.0 after the initial hype, McKinsey & Company.

Safety: A Paramount Necessity

Robots are not a new entrant in the food industry. They have handled palletizing and packaging jobs with speed and efficiency. It is only with the recent advances in gripper and vision technology that they are foraying into secondary food processing.

Managing sturdy or even the not-so-delicate parts is not a big task for robots. What is challenging is dealing with handle-with-care parts [1]. Take fragile foodstuffs such as raw eggs, soft chocolates, or strawberries for example. Or odd shaped apples and pears.

Quality and Speed are the two pivotal benefits of automation [2]. Employing conventional robots will damage these foodstuffs, and negate the quality advantage. In their mission to get over this barrier, robotic engineers turned to nature and came up with a simple yet excellent solution – the bionic gripper.

Nature has always triggered engineering developments. Bionics or engineering modelled on biology or living creatures [3] goes back centuries [4]. Jack Steele conceived the term bionics back in 1958 to describe engineering based on biology [5].

Japan’s Shinkansen trains for example employ the design of the Kingfisher’s beak to avoid sonic boom. Whale fin contours are the basis for the quieter, more efficient wind turbines with serrated edges [6]. And, there was the Gator Sharkote project that studied shark shin to develop an anti-fouling coating [7].

Robots & Grippers

Robots utilize two types of end effectors viz. grippers and tools. Connected at the robot wrist, they are usually custom built for specific operations. End-of-Arm Tooling (EOAT) is among the principal robot parts because it comes in touch with the part [8].

Grippers are generally involved with loading-unloading operations. One area where robots have an edge over manual labour is that they cause minimal damage to the handled part – the quality advantage of automation. But this advantage materializes only with the proper design and fabrication of gripper [8].

Robots utilize four main types of grippers [8]:

  • Vacuum Grippers are flexible, making them a standard EOAT. Polyurethane or rubber suction cups or closed cell layer of foam rubber acts as the pickup mechanism.
  • Hydraulic Grippers deliver up to 2000 psi gripping force, but are prone to oil leakages and maintenance issues.
  • Pneumatic Grippers are small sized and lightweight.
  • Servo-Electric Grippers use electronic motors for better control over gripper jaws. Plus, they are cost effective and can operate with varied material tolerances when working with parts.

Bionic Grippers

Tertiary Food Processing delivers Ready to Eat (RTE) foods and Heat to Serve foods [1]. RTE foods include instant snacks and soups, ready meals, baked goods, instant/breakfast cereals, meat products and the like [2]. Young people in the 18-35 age-group are the most active consumers of RTE foods [2].

Safety is at the core of all processes for manufacturing RTE foods. This is because they are not processed any further [3] – their hygiene has to be ingrained in their processing. Regulatory bodies prescribe strict standards for operators across the food supply chain.

For example, the Food Safety and Standards Authority of India (FSSAI) mandates a documented Food Safety Management System (FSMS) plan for every operator. FSMS plan includes Good Manufacturing Practices and Good Hygienic Practices specific to the sector [4].

Apart from safety, these standards ensure nutritional value of foods. Such standards establish what foods can and cannot contain as well as what are the minimum and/or maximum limits of ingredients they can contain. This, they do by:

  • Restricting the amount and type of natural and synthetic contaminants including microbes, pesticide/insecticide residues, and metal, antibiotic, and crop contaminants [4].
  • Laying down guidelines for which food additives can be included and in what quantity [4].
  • Instituting norms for packaging, labeling, and advertisement claims [4].
  • Capping the industrial trans-fat content in foods for them to qualify as trans-fat-free [5].

RTE Manufacturing Process

Safety is of course the core principle for RTE foods manufacturing. The process must also be rapid, energy efficient, and ergonomic while developing the required food flavor and texture.

Following are the general stages in manufacturing RTE foods:

  • Unloading & Transport: Unloaded raw materials are transported to the location of the cleaning equipment.
  • Cleaning: Removes dirt, dust, mud, stones, wood pieces and other such contaminants from the main raw materials. The cleaning stage may also include mechanisms for drying the raw materials wetted by the cleaning solution. Quality control check will affirm the efficacy of the cleaning process.
  • Transit: Cleaned raw materials are loaded into cooking kettles. Cybernetik Technologies’ Buggy Lifters have:
    • 350 liter Eurobins to hold raw materials.
    • Brake motor driven belt and pulley mechanism to lift the loaded Eurobin to the required height.
    • Tipping system to tilt the bin to the necessary angle for unloading raw material into the cooking kettle. Workers don’t have to lift and tilt the bin, something which eliminates the risk of injury. Safety features include photoelectric sensors, emergency stops, and alarm interlocks.
  • Pressure Cooking: Industrial cooking kettles are fundamental equipment in the food industry. These can cook, mix, stew, pasteurize, sterilize, or lower the moisture content in raw materials or partially processed foods.

High pressure cooking improves the shelf life and safety of foods, maintains their nutritional value, and saves energy costs [6] while lending them better odor and taste, maintaining their attractive appearance, and minimizing cooking times [7].

Industrial pressure cooking involves multiple steps. Different raw materials are added at various stages after the cooked material is drained, rinsed, simmered etc. Quality control checks at the end of certain steps are instituted.

  • Features of Cybernetik Technologies’ Cooking/Steam Kettles:
    • Automated for stop-start and the feeding-discharge of products.
    • Precise temperature control.
    • Uniform heating from all sides.
    • High-strength limpet/dimple jacket design allows use of thinner vessel shells.
    • Level indicators for accurate material feeding.
    • Load cell weighing option for batch-to-batch consistency.
    • Scraped surface agitator mixes materials to a homogeneous stage and prevents “burn-on” by not allowing material to stick to kettle wall.
    • Brisk meter checks process completion.
    • Safety devices and mechanisms include pressure-temperature sensor, pressure relief valves, safety interlocks, emergency stops, and indicator lamps.
    • Condensate recovery system for water reuse.
    • Clean in Place (CIP) provision for easy cleaning-maintenance.
  • Mixing: Double/twin shaft paddle mixers are the favorite mixers of the food industry for over three decades for bulk solid mixing. Cybernetik Technologies’ Twin/Double Shaft Paddle Mixers:
    • Are automated.
    • Mix products gently to rapidly produce a homogeneous mix.
    • Are suitable for wet mixing.
    • Come with safety features such as emergency stop and alarm interlocks.
    • Have CIP facility for easy cleaning-maintenance.
  • Buffering: After pressure cooking, the mixture is buffered and checked for shelf life. Cybernetik Technologies’ Buffer Tank has:
    • Dimple jacket design for high strength.
    • Ribbon blades for slow mixing.
    • Speed sensor to monitor mixing speed.
    • PID control for automatic temperature regulation.
    • Safety mechanisms such as emergency stop and alarm interlocks.
    • CIP system for easy cleaning-maintenance.
  • Holding: Maintaining or holding the temperature of cooked raw materials the required temperature for a specified duration prevents the growth of harmful disease causing microbes [8]. Holding process can be hot holding or cold holding.


Technological innovation empowers engineers to deliver on all the requirements of the RTE manufacturing process – safety, speed, efficiency, operator comfort, and quality.

Cybernetik Technologies has been delivering high-quality, purpose-built equipment and automation solutions to the Ready-to-Eat (RTE) food industry for decades. Contact us at +91 20 6790 9600 or [email protected] to get a first hand feel of the excellence of our experience.


  1. Food Processing, Wikipedia.
  2. Ready-to-Eat Food Market Report, Mordor Intelligence.
  3. Safety of Ready-to-Eat Foods, ResearchGate.
  4. Ministry of Food Processing Industries India Reports.
  5. Food safety agency FSSAI launches ‘Trans Fat Free’ logo, Hindustan Times.
  6. High Pressure Equipment Designs for Food Processing Applications, Food Engineering Series.
  7. Industrial Pressure Kettle VKP, FoodTechProcess.
  8. Food Storage, Preparation and Safety: In-depth, Croner-i.
Previous Next
Test Caption
Test Description goes like this
Top map-markercrosschevron-down
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram